Reversed Dirichlet environment and directional transience of random walks in Dirichlet environment
نویسندگان
چکیده
We consider random walks in a random environment given by i.i.d. Dirichlet distributions at each vertex of Zd or, equivalently, oriented edge reinforced random walks on Zd . The parameters of the distribution are a 2d-uplet of positive real numbers indexed by the unit vectors of Zd . We prove that, as soon as these weights are nonsymmetric, the random walk is transient in a direction (i.e., it satisfies Xn · →n +∞ for some ) with positive probability. In dimension 2, this result is strenghened to an almost sure directional transience thanks to the 0–1 law from [Ann. Probab. 29 (2001) 1716–1732]. Our proof relies on the property of stability of Dirichlet environment by time reversal proved in [Random walks in random Dirichlet environment are transient in dimension d ≥ 3 (2009), Preprint]. In a first part of this paper, we also give a probabilistic proof of this property as an alternative to the change of variable computation used initially. Résumé. On s’intéresse aux marches aléatoires dans un environnement défini par des variables de Dirichlet i.i.d. en chaque sommet de Zd ou, de façon équivalente, aux marches aléatoires renforcées par arêtes orientées sur Zd . Les paramètres de ce modèle sont un 2d-uplet de réels positifs indexé par les vecteurs unitaires de Zd . On démontre que, dès que ces poids ne sont pas symétriques, la marche aléatoire est transiente dans une direction (c’est-à-dire qu’elle satisfait Xn · →n +∞ pour un certain ) avec probabilité positive. En dimension 2, la loi du 0–1 de [Ann. Probab. 29 (2001) 1716–1732] permet de renforcer ce résultat en transience directionnelle presque-sûre. La preuve repose sur la propriété de stabilité des environnements de Dirichlet par renversement temporel introduite dans [Random walks in random Dirichlet environment are transient in dimension d ≥ 3 (2009), Preprint] et dont on donne une nouvelle démonstration, de nature plus probabiliste, en première partie du présent article. MSC: 60K37; 60K35
منابع مشابه
Sub-ballistic random walk in Dirichlet environment
Abstract. We consider random walks in Dirichlet environment (RWDE) on Z, for d > 3, in the sub-ballistic case. We associate to any parameter (α1, . . . , α2d) of the Dirichlet law a time-change to accelerate the walk. We prove that the continuoustime accelerated walk has an absolutely continuous invariant probability measure for the environment viewed from the particle. This allows to character...
متن کاملRandom Dirichlet environment viewed from the particle in dimension d3
We consider random walks in random Dirichlet environment (RWDE), which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On Z, RWDE are parameterized by a 2d-tuple of positive reals called weights. In this paper, we characterize for d≥ 3 the weights for which there exists an absolutely continuous invariant pr...
متن کاملRandom walks in a Dirichlet environment
This paper states a law of large numbers for a random walk in a random iid environment on Z, where the environment follows some Dirichlet distribution. Moreover, we give explicit bounds for the asymptotic velocity of the process and also an asymptotic expansion of this velocity at low disorder
متن کاملM ar 2 00 5 RANDOM WALKS IN A DIRICHLET ENVIRONMENT
This paper states a law of large numbers for a random walk in a random iid environment on Z d , where the environment follows some Dirichlet distribution. Moreover, we give explicit bounds for the asymptotic velocity of the process and also an asymptotic expansion of this velocity at low disorder.
متن کاملIntegrability of exit times and ballisticity for random walks in Dirichlet environment
We consider random walks in Dirichlet random environment. Since the Dirichlet distribution is not uniformly elliptic, the annealed integrability of the exit time out of a given finite subset is a non-trivial question. In this paper we provide a simple and explicit equivalent condition for the integrability of Green functions and exit times on any finite directed graph. The proof relies on a quo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010